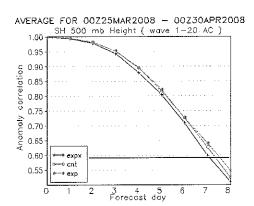


NOAA/NCEP Perspective

Lidia Cucurull

GPSRO Program Scientist, NOAA

NCEP's interest on COSMIC


- Data available in real-time
- Significant benefits of adding COSMIC into NCEP's Global Data Assimilation system have been shown
- This has been accomplished with work leveraged at the JCSDA
- We would like to see continuation of the use of RO data

Interests (I)

- AC scores (the higher the better) as a function of the forecast day for the 500 mb gph in Southern Hemisphere
- 40-day experiments:
 - expx (NO COSMIC)
 - cnt (operations with COSMIC)
 - exp (updated RO assimilation code with COSMIC)
 - » Many more observations
 - » Reduction of high and low level tropical winds error

1. COSMIC provides 8 hours of gain in model forecast skill at day 4!!!!

Interests (II)

- Evidence suggests that the use of COSMIC in the Northern Hemisphere and Southern Hemisphere improves the performance of the model, alleviating "dropouts" in Anomaly Correlation Scores.
 - Data are not biased
 - There is no over sample

"Dropout" study with COSMIC

(Courtesy of DaNa Carlis, EMC)

Anomaly Correl day 5 Z 500mb s hem lat 20-80

- Skill score dropouts plague NCEP's global model performance in Northern and Southern Hemispheres
- Dropouts are defined by 5-day anomaly correlation (AC) scores < 0.70
- For example, the 00Z Feb. 03 2008 case, using GPSRO data alleviated a dropout in the southern hemisphere.

SH 5-day AC scores:

GFS=0.65 (NCEP's model) GDAS=0.69 ECMWF=0.83

First guess+nodata=0.70
First guess+conven=0.68
First guess+conven+amsua=0.70
First guess+conven+airs=0.75
First guess+conven+amsub=0.77
First guess+conven+mhs=0.78
First guess+conven+gpsro=0.79
First guess+conven+mhs+amsub=0.78

First guess+conven+mhs+amsub=0.78
First guess+conven+gpsro+mhs+amsub=0.87

2. COSMIC alleviates 'dropouts' in the Southern Hemisphere

Perspective on COSMIC

- There is high level of interest to further assess the benefits of COSMIC by
 - Improving the assimilation algorithm (forward operator, quality control checks, observation error characterization)
 - Reducing the on-site latency of the data
 - Formal discussions/reviews with NCEP management
- Our interests covers
 - NWP impact studies (weather- global and mesoscale scales)
 - Tropopause analysis (weather and climate)
 - Electron density of the ionosphere (space weather) see Tim Fuller-Rowell's talk
- RO is the only observing platform that actively combines
 - Terrestrial Weather
 - Climate analysis and short-term forecasts
 - Space Weather Prediction

Attachment 6: 4/4

Operational needs

- Low latency
 - Global (6hr time window/2h45min cutoff for early analysis)
 - Regional (NAM: 3hr time window/1hr15min cutoff)
- Latency requirements may change with NPOESS era (lower latency)
- Data stream to be stable (not many changes)
- Sufficiently accurate data
- Early access and involvement with the data